اسمدة 3

and plant growth (yields)

1- Liebig (1855) , Springl (1839)
Law of minimum (law of limiting factor) :
i- plant growth (yield) is determined by factor presents in lowest conc., regardless of any other factor.
ii- addition of other factor does not influence response to application of limiting factor.
iii- response of growth to limiting factor is linear.

Figure 5. To get the highest possible yield no nutrient must be limiting
The factors interact and a crop can make best use of the factor that limits growth when the other facotrs are close to their optima.

Crop yield cannot be greater than the most
limiting soil nutrient permits

Boresch proposed Liebigs law to be

2-Blackman

optima and limiting factor

genetic yield limit
Cate- Nelson
nutrients or any other limiting factor

3- Mitscherlich Equation (law of diminishing returns) when plants were supplied with adequate amounts of all but one nutrient their growth was proportional to the amount of this one limiting element which was supply to the soil. Plant growth increased as more of this element was added, but not in direct proportion to the amount of the growth factor added. The increase in growth with each successive addition of the element in equation was progressively smaller. Mitscherlich expressed this mathematically as

$$
d y / d x=(A-Y) C
$$

dy increase in yield resulting from an increment of the growth factor dx
$\mathrm{dx} \longrightarrow$ increment of the growth factor
$A \longrightarrow$ maximum possible yield by supplying all growth factors in optimum amounts
$y \longrightarrow$ yield obtained after any given quantity of the factor x has been applied
$\mathrm{C} \longrightarrow$ constant depend on the nature of growth factor
(C is not constant varies widely for different crops) integrated of above equation we obtain

$$
\log A-\log (A-Y)=C X_{1}
$$

Micherlich eq. could be stated as

$$
\log (A-Y)=\log A-0.301(X)
$$

replaces (c) when yields are expressed as \% ($\mathrm{A}=100$) if A , the max. yield, is considered to be 100%, equation reduces to

$$
\log (100-y)=\log 100-0.301(x)
$$

if one unit of the growth factor x added then

$$
\begin{aligned}
\log (100-y) & =\log 100-0.301(1) \\
& =2-0.301 \\
& =1.699 \\
100-y & =50 \\
y & =100-50
\end{aligned}
$$

$$
=50 \text {, so addition of first unit of growth }
$$ factor results in a yield that 50% of max. and so on for increasing addition of growth factors

(Kirkby, 1982

The Baule unit
unit of fertilizer, or any other growth factor, be taken as that necessary to produce a yield that is 50% of the maximum possible.
4-Bray 's Nutrient Mobility Concept.
A modification of the Micherlich- Baule- Spillman
" as the mobility of a nutrient in the soil decreases, the the amount of that nutrient needed in the soil to produced a max. yield increases from a variable net value, determined principally by magnitude of the yield and the optimum \% composition of the crop, to an amount whose value tend to be a constant."

* plants absorbed mobile nutrients from root system sorption zone while immobile nutrients absorbed from root surface sorption zone
* mobile nutrients follow liebig low and immobile nutrients follow percentage sufficiency of Micherlich

5- Spillamans Equation

$$
y=A\left(1-1 O_{-}^{C x}\right)
$$

A, C, and x as above. Expanded for many nutrients

$$
y=A\left(1-10-{ }^{C l X 1}\right)\left(1-10-{ }^{C 2 X} 2\right) \ldots \ldots
$$

	$\begin{aligned} & \text { riva } \\ & \text { mogra } \end{aligned}$	Rumay	$\begin{array}{r} 3-=: \\ 0, \end{array}$	rus	Ala	4	$\underline{8}$	W	$\underline{5}$
Gine crandy	B Lun	Eal	\pm	－1	E＝	EEi	－	－	－
	E nol	1101	± 1	22	－Eこ	－\＃3	19	12	－11
－	3 ncia	T2	\＃7	－	三＝	E	－	－	－
	± 1001	1－1	E1	2ミ	－ミニ	－－8	2	74	2－
Plaize	3 LCl	72	3	－	E4	－	－	－	\pm
	－100］	1ご1	± 1	2	－ここ	－－0	\geq	\pm	－
F－talues	20 cc	1＊口	39	－7	－＝	－＝8	\geq	4	\pm
	－1 Rell	$17 \pm$	Bul	\＃3	31 －	29］	－	2	－
	－	T1］	≥ 1	＝	－7－	± 1	－	－	－
	－1 H0］		7	\＃3		\＃13	－	9	－
	25 100］	1E－	3	－7	－3ミ	－13	\cdots	$1 \pm$	－
	－1	211	71	± 1	シミニ	2－71	ET	－	－
Sugar zarte	Ealoul	E1	± 1	$2 \pm$	－＝－	－ミ－	－	－	－
	110］00］	1111	19	3	3－【	2－3	－	E1	3
ローiニワ！	Esioul	1コロ	≤ 1	23	－ミー	－ミミ	－	－	\pm
Tournetues	4 HCO	7111	31	－	－＝－	－ミ	－	77	E－1
－uturrriber	3simul	Eid	－	マニ	－－ロ	틀	－	\＃	－
Eltalla therry	7 ncil	2－	－1	2ล	－3I	－－	16＊	19	-9
Eyyluent	－1 norl	－シーワ	3	－	三－	Esi	－	－	－
	2－010	2as	－44	－	\＃7	E1	－	13	－
Etesme	2－010	－En	≤ 1	23	－ここ	－－0	－	－	－
Erucindinus	－E01］	－1コア	－	7	－	ミミ	19	17	$\underline{-2}$
－＝tuan	－Ital	73	≥ 1	－	\pm	－	E	4	\pm
H－Emed + －［int］	Sincal	181	13	27	－ミニ	－－－	－	$\pm \pm$	31
	－IT－1	$\square \square$	표	－	－ご	－＝	$\because 8$	\pm	4

Figure 2 - Response of plant to amount of one nutrient

